Patient & Family Guide
2017

Epilepsy

Information for Persons with Epilepsy, Their Families & Caregivers

www.nshealth.ca
Contents

What is epilepsy? ... 1
How common is epilepsy? ... 1
Is epilepsy inherited? ... 1
What is a seizure? .. 2
Auras: an early warning system for seizures 3
How are seizures classified? ... 4
Classification and seizure types 5
How is epilepsy diagnosed? .. 9
How is epilepsy treated? ... 14
How does antiepileptic medication work? 15
How can I help my doctor control my seizures? 16
What can I do to help my memory? 20
What does epilepsy mean for my usual activities? 22
What is epilepsy surgery? ... 22
What is Vagal Nerve Stimulation therapy? 23
First aid for seizures .. 24
Resources ... 27
Purple Day for epilepsy – get involved! 28
Epilepsy

What is epilepsy?
Epilepsy is a group of diseases of the brain. With epilepsy, a person has had 2 or more seizures without a clear cause. The seizures may run in the person’s family or may be due to a brain injury. The brain injury could be from many causes, including severe head trauma, stroke, brain infection or brain malformation that the person is born with. The cause may also be unknown.

How common is epilepsy?
Between 0.5 and 1% of the population suffers from epilepsy. In Nova Scotia, this means that between 4500 and 9000 people may have epilepsy. Most epilepsy begins at the extremes of age (childhood and old age) but new cases can develop at any age, depending on the cause.

Is epilepsy inherited?
Some kinds of epilepsy have an inherited pattern. This means the disease may run in families. Most commonly these are forms of the generalized epilepsies that begin in childhood or the teenage years.

Although rare, some people have certain inherited diseases that have epilepsy as only one of many features of the illness. When epilepsy is the only sign of the illness, there is a low chance of inheritance.
What is a seizure?

A seizure is a brief, abnormal, excessive (too much) discharge of electrical energy in the brain. A seizure may produce a noticeable change in behaviour. There are many different types of seizures. The type of seizure depends on the part of the brain where the seizure starts (seizure focus) and the way the abnormal electrical discharge spreads through the brain.

The person may have sensations such as:

- “Pins and needles”
- Smells
- Sounds
- Fear
- Depression
- Changes in sight or hearing
- Momentary muscle twitches or head nods
- Staring with loss of awareness
- Convulsive movements (spasms)

Most seizures last seconds to minutes, and rarely longer.

The time period right after a seizure, called the “postictical period”, varies depending on the length of time, strength and type of seizure. The most common symptoms that a person may have right after a seizure are:

- Confusion
- Muscle aches
- Headache
- Fatigue (tiredness)
Auras: an early warning system for seizures

An aura is a sensation, feeling or movement that is actually a “focal” seizure (see page 7). Auras may consist of dizziness, an unusual feeling in the stomach, buzzing in the ear, a powerful emotion or just about any sensation at all. There may be movement of an arm or leg, hand or foot, or even the face. Many people don’t realize they have an aura until they talk about their symptoms with a doctor. Remember that an aura is really just another seizure type – one that you are aware of.

After you have a seizure, try to remember if there was anything unusual at the start (like an unexplained sensation or feeling) and write it down. Identifying an aura can be helpful. If you start to notice a pattern, you may have found an early warning system for your seizures. You may be able to take quick precautions to be safer when the seizure progresses. Also, the symptoms you have during an aura may help your doctor figure out where in your brain the seizures start.
How are seizures classified?

Seizure classification describes the type of seizures, but doesn’t tell us why you have them. Seizure classification can help determine the type of tests and treatment that will be best for you.

Seizures are classified by what part of the brain they affect. The brain is like a team of workers. Certain parts of the brain are responsible for certain jobs. For example, one part of the brain is responsible for how we see; another part is responsible for movement. Other parts of the brain control our abilities to speak, smell and taste. All parts of the brain communicate with each other over a network of brain cells called “neurons”. Neurons communicate through small electrical charges that travel along nerve pathways similar to electricity in a wire.
Classification and seizure types

Generalized seizures

A seizure is called “generalized” if there is an uncontrolled electrical discharge that affects both sides of the brain from the start. The main types of generalized seizures are tonic-clonic seizures, absence seizures, myoclonic seizures, tonic seizures and atonic seizures.

- **Tonic-clonic seizures** (in the past called “grand mal”) start with loss of consciousness, followed by body stiffening (tonic phase), a fall if standing, and often a cry caused by air forced through contracted (tightened) vocal cords. Next, the legs and arms begin to jerk (clonic phase). Breathing may be shallow and irregular; skin may look bluish because of irregular breathing. Tonic-clonic seizures usually last 1-2 minutes.
 - Other symptoms that can happen during this kind of seizure include drooling, biting of the tongue or cheek, and loss of bladder or bowel control. Consciousness returns slowly.
 - The postictal (post-seizure) symptoms can include headache, confusion and fatigue lasting minutes to hours. Shortly after consciousness returns, the person will often fall asleep.
When tonic-clonic seizures repeat without full recovery between seizures, this is called status epilepticus and is a medical emergency.

When a single tonic-clonic seizure lasts 5 minutes (not including the postictal phase or recovery phase) call 911 for medical help.

- **Absence seizures** (called “petit mal” in the past) consist of short episodes of staring into space for a period of 5-30 seconds. Impairment of awareness (failure to respond) starts without warning and ends suddenly, leaving the person alert and attentive. During this kind of seizure the person may have rapid eye blinking or hand and mouth movements.
 - A person who is not taking medication may have 50-100 absence seizures a day. The seizures may interfere with learning because during the seizure the person cannot remember what is being said or shown to them.
 - Absence seizures typically start in childhood (4-14 years old) and may get better on their own in the late teenage years.

- **Myoclonic seizures** consist of brief, shock-like jerks of a muscle or group of muscles. These seizures usually cause abnormal movements on both sides of the body at the same time. The neck, shoulders, upper arms, body and upper
legs are usually involved. Similar movements may happen in healthy people who do not have epilepsy. For example, as many people fall asleep, their body suddenly jerks (referred to as “somnolescent starts”).

- **Tonic seizures** usually last less than 20 seconds. They are associated with sudden stiffening movements of the body, arms or legs, and involve both sides of the body at the same time. They happen more often during sleep.

- **Atonic seizures** are identified by a sudden loss of muscle tone, which happens without warning. The person’s body and head drop (or droop). The seizure lasts only seconds but injury is common if the seizure happens while the person is standing because it will cause a fall.

Focal seizures

Focal seizures (called “partial seizures” in the past) are caused by an abnormal burst of electrical activity in only part of the brain. The signs and symptoms of a focal seizure depend on what part of the brain is involved during the seizure. Some focal seizures leave the person alert and able to interact with the environment.

Afterwards, the person is able to remember what happened because consciousness is not interrupted (see “aura”). The seizure may be a strange sensation (for example, a tingling feeling in
part of the body) or a rhythmic jerking movement of one limb, part of a limb or the face. Any of the senses may be affected (touch, smell, taste, sight or hearing). The person may have a sense of overwhelming fear or anxiety or have a strange memory that comes out of nowhere.

Focal seizures can last seconds to minutes and minor symptoms may not be noticeable to anyone but the person having the seizure.

Other focal seizures that involve a larger area of the brain lead to loss of awareness or consciousness. The seizure may start with a “warning” (see “Aura” on page 3). It all depends on where in the brain the seizure starts.

The person may become dazed and confused and not respond when spoken to. They may make repeated movements such as lip smacking, chewing or hand and body movements. Some people may speak inappropriately or look like they are doing specific tasks. The person will not remember these events after the seizure is over. A focal seizure can last 1-5 minutes and may be followed by drowsiness and confusion.

If a focal seizure spreads to both hemispheres (sides) of the brain, it can become a bilateral convulsive seizure (called “secondarily generalized tonic-clonic seizure” in the past).
How is epilepsy diagnosed?

There are a number of resources the doctor will use to determine the diagnosis of epilepsy. The patient’s medical history is the most important. A careful description of the circumstances and events before, during and after a seizure helps in determining the diagnosis. Reports from the patient and witnesses give the doctor valuable information. There are tests that may help confirm the diagnosis of epilepsy and classify the seizures. Not all patients need all of these tests.

Tests:

- **EEG** (Electroencephalogram)
 - An EEG is the most specific test for confirming the diagnosis of epilepsy. It records electrical brain function (remember, epilepsy is a disorder of electrical brain function).
 - Electrical activity is recorded using small electrodes (flat metal disks) attached to the scalp with a sticky paste. The test is painless and harmless and takes about 1½ hours from start to finish, including 30 minutes of recording time.
 - People with epilepsy do not always have an EEG abnormality with a single recording. The abnormal electrical discharges are more likely to be seen after multiple or longer recordings. The patient may be asked to stay awake for most of the night before an EEG. This is
because abnormal electrical activity otherwise not seen may happen during an EEG after sleep deprivation and during sleep. The EEG pattern recorded helps define or classify the type of seizures.

• **Video EEG telemetry**
 › A routine EEG (even with sleep deprivation) may not give the information your doctor needs for diagnosis and treatment. The EEG may need to be recorded during an actual seizure. A seizure doesn’t often happen during a regular 30 minute recording.
 › To have video EEG telemetry, a person must be admitted to a special inpatient Epilepsy Monitoring Unit in the hospital. They are then monitored by EEG, a video camera and a microphone, 24 hours a day for many days or weeks. Besides helping to clarify or confirm the diagnosis of epilepsy, video EEG telemetry is critical in the preoperative evaluation of persons being considered for epilepsy surgery.

• **CT scan** (Computerized Axial Tomography)
 › A CT scan lets the doctor see your brain structure. During a CT scan, an X-ray beam moves around your head, taking many pictures that are then processed by a special computer. Sometimes a dye is injected into your bloodstream to make the pictures clearer. This test, along with an MRI scan (see below), is used to try to find a cause for the epilepsy or seizures.
• **MRI scan** (*Magnetic Resonance Imaging*)
 › An MRI scan gives very precise and lifelike pictures of your brain structure using a very large magnet, radio waves and a computer. Like a CT scan, an MRI scan is also used to try to find a cause for the epilepsy. This test takes 45-60 minutes. You must lie as still as possible in the scanner.
 › If you have a Vagus Nerve Stimulator (VNS), it must be turned OFF before an MRI scan is done. Once your test is completed the VNS can be turned back on by your doctor.
 › Functional MRI (fMRI) is a neuroimaging procedure that measures brain function by finding small changes in blood flow. This test takes about 30 minutes and is used to try to help your doctor advise you about the safety of a surgical procedure for epilepsy. The test is most often done to identify the brain location of speech and language function and areas involved with movement of body parts.

• **PET scan** (*Positron Emission Tomography*)
 › A PET scan is also used to help locate the part of the brain that is causing seizures. Like an EEG, it is a test of brain function. Instead of electrical waves, the PET scan shows how the brain uses oxygen or glucose (sugar).
 › A small amount of radioactive glucose is injected into your vein, usually in the arm. The PET scan makes a picture to show how the cells
in your brain use the glucose. The part of your brain where a seizure comes from doesn’t work properly. It doesn’t use the sugar like the other parts of your brain. The doctor can see that on the picture. This test takes 30-60 minutes.

• **MEG scan** *(Magnetoencephalography)*
 › A MEG Scan is another brain function test that measures magnetic fields. For every electrical field, including those in the brain, there is a magnetic field at right angles (perpendicular) to it. A MEG scan makes a magnetic source image. The doctor uses this image to try to find where in your brain the seizures come from. The amount of time to do this test varies. It may take as long as 1½ hours. For most of that time, you will lie or sit as still as possible.

• **Neuropsychology**
 › Memory problems and other thinking and learning difficulties are common in some persons with seizures. A psychologist will evaluate your situation using neuropsychological tests and an interview.

 › The psychologist will ask about how epilepsy has affected your personal, social, educational and work life. They will give you paper and pencil tests of memory, attention, thinking, reasoning, motor skills, language and spatial skills. The neuropsychological evaluation takes about 5 hours and may be broken up into shorter sessions if needed.
The neuropsychological evaluation can show if speech function is controlled by the left or right side of your brain. The pattern of strengths and weaknesses shown on the test results tells us what parts of the brain might be healthy or not working properly.

The neuropsychological evaluation can also help identify epilepsy surgery candidates who might be at risk for serious memory or speech disorders if they have surgery.

For people who are being investigated for epilepsy surgery, sometimes the routine neuropsychological evaluation cannot give us the answers we need. Some people need this functional MRI (fMRI). During a special MRI, the neuropsychologist will ask you to do simple language tasks.

A very special test called an Etomidate Speech and Memory Test (eSAM) may be needed in rare cases during the pre-surgical assessment. This is only used if there is a question about your memory that the other tests have not been able to answer. For this test, a Radiologist will place a catheter (narrow tube) in an artery going to your brain and test your blood flow. Then, a special medication (called etomidate) will be injected by an anesthetist. This drug puts half of your brain “to sleep”. The neuropsychologist will then ask you questions to test your speech and memory. Your EEG will be recorded and interpreted during this test by the epilepsy doctor.
How is epilepsy treated?

Antiepileptic drugs are the main treatment for epilepsy. These drugs do not cure epilepsy but try to control it by preventing seizures. The ultimate goal of antiepileptic drug therapy is to establish perfect seizure control and no or minimal side effects from medication. Sometimes long-term seizure control may not be possible because of the underlying cause.

Drug therapy is planned for each patient. It is important for the person with epilepsy to be an active participant in the discussion about and treatment of their epilepsy. Open communication between you and your doctor should include talking about:

› What to expect
› What kind of results are acceptable
› Your experiences
› The impact of both unacceptable medication effects and seizures on your quality of life

Talking openly is the best way to manage drug therapy. Your lifestyle and the cost of the drug are also factors that must be considered when choosing a medication.

When drug treatment of epilepsy is started it may take several months of adjusting dosages or trying different drugs before the best effects can be achieved.
How does antiepileptic medication work?
Antiepileptic drugs must be taken every day in order to keep a steady level of the drug in your body if they are to be effective in preventing seizures.

Some drugs are more effective for certain types of seizures than others. After a medication is swallowed, it is absorbed into the blood. Some drugs are broken down into other chemicals in the liver; some leave the body unchanged. The speed that this happens varies based on the person, the type of drug, and what other medications are in the body. For these reasons, some medications may need to be taken more often in order to keep a steady level of medication in the blood.

The level of some drugs in the blood may be measured in order to better adjust your dosage. This is not useful with newer antiepileptic drugs. The most important thing to note is how you feel and whether your seizures are controlled. When a medication is added or a dosage is changed, it usually takes several days before the body establishes a new steady level of the drug.

It is very important not to change medication doses on your own. Always talk to your doctor first.
How can I help my doctor control my seizures?

☐ Medication must be taken as prescribed. Don’t make changes without talking with your doctor first. One of the most common reasons for treatment failure is not taking medications as directed.

☐ It may be helpful, as a reminder, to take your medication at the same time that you do other routine activities, such as brushing your teeth, eating meals or going to bed.

☐ If you miss a dose of medication, take it as soon as you remember. To avoid missing a dose, try using your cell phone alarm, buy a daily pill counter or ask your pharmacist about blister packing.

☐ Check how many refills are left on your prescription bottle before your next visit to your doctor or pharmacist.

☐ Always refill prescriptions in time and have an “emergency” supply of medication on hand. Running out of medication or suddenly stopping medication may lead to repeated closely spaced seizures with serious results. Remember that some medications cannot be kept for long periods of time without losing their usefulness. Don’t take old pills from your medicine cabinet or any other place without checking with your doctor or pharmacist.
Before taking other medications, including nonprescription drugs, check with your doctor or pharmacist about interactions with antiepileptic drugs. For example, aspirin, certain antibiotics and anti-inflammatory drugs may cause important drug interactions with some antiepileptic drugs. Birth control pills and some antiepileptic medications may each not work as well when taken together.

It is best to avoid too much sleep deprivation and too much alcohol or recreational drug use. Avoidance may be preferable. Moderation in everything is a good rule to live by.

When you are having any dental or surgical procedure it is important that you talk to your doctor about medication doses on the day of surgery. Tell your surgeon and anesthetist about your epilepsy and medication.

When there is too much medication in your blood, you may have symptoms of “toxicity”. These symptoms are similar for most antiepileptic medications. The most common symptoms are dizziness, blurred vision, drowsiness and loss of balance. Other symptoms of too much medication can happen that are unique to a particular drug. Contact your doctor if you have any of these symptoms.
With some antiepileptic drugs, blood tests to look for rare, harmful effects on the blood and liver may be needed, especially when starting a new or different drug treatment.

You may use generic medications instead of brand name medications. Generic drugs are required by law to be as effective as brand name drugs. It is best to be consistent with taking either a generic or brand name drug rather than switching from one to the other. Your body may handle different preparations of the same drug in different ways.

For a person taking antiepileptic drugs, family planning is important. To ensure the best outcomes for both mother and child, your doctor must be consulted before you get pregnant. A special meeting time should be arranged so that the couple can talk about this very important issue with the doctor. Some antiepileptic drugs may cause birth defects in a small percentage of births. All women with epilepsy who are of child-bearing age should take a vitamin called folic acid, 2-5 milligrams each day. Drug therapy may have to be changed before and during pregnancy. It is important that the expectant mother keep in close contact with appropriate medical staff during her pregnancy.

Some antiepileptic drugs may affect bone health. Talk to your doctor about taking extra calcium and vitamin D.
It is important to keep a calendar record of your seizures. Write down a description of your seizures, their timing and any possible drug side effects. Each time you see your doctor, take your calendar record with you. There are several online resources that you might wish to use for keeping a seizure record. One example is www.seizuretracker.com.

People with epilepsy often experience depression, anxiety and stress. Adjusting to a chronic condition can be difficult, but help is available. If you think that you are depressed or anxious, or if you are having trouble coping, please tell your doctor or another health care professional. Counselling services are available through your hospital or local Mental Health outpatient clinic. These services are covered by MSI and are offered free of charge. Other counselling services in the community may be covered by private insurance.

It is important to realize that ultimately, while your doctor can help you with advice, your attitude toward your epilepsy plays an important role in seizure control.
What can I do to help my memory?

Many people with epilepsy complain of absentmindedness and forgetting names or things that happened in the past. This may be due to the underlying cause of the epilepsy, medication, stress and anxiety, or a combination of all three. There are ways to help with these difficulties, but there are no cures.

Try to be organized about what you want to remember. Keep a daily diary where you record important events. Write down when your seizures happen, when your medications are changed, when you have appointments, and the names of new people that you want to remember. Make the diary a big part of your life, checking it every morning and writing in it every day. Some people use an iPad, smartphone or other device to keep a diary or notes.

When you want to remember to do something, use a simple aid. For example, if your aunt’s birthday is next week, write her name on that day in a calendar or diary. Put another note to yourself on the telephone, if you plan to call her that day. The notes and cues will prompt your memory.

When you want to remember a phone message, first write down the important points in a diary or book (not on loose sheets of paper). Then put a colourful clip on that page to remind you to pass on the message.
If you can’t remember a name or number that you knew before, stay calm. Getting upset makes it harder to remember. It is OK that your memory is not perfect and that you need extra time. When did you last see the person? Who were they with? What were you doing? These clues can help to gradually build up the memory and make it easier to recall the name.

Stress and anxiety can make it harder to pay attention and to remember information when you need it. Having trouble with memory can cause stress as well. When you can’t focus, start to feel anxious when you can’t find something (your keys, for example), or can’t remember an important telephone number or whether you took your medication this morning, some “in the moment” strategies might help.

Step away from the situation and think about something else. Do a few minutes of deep breathing, then do a quick mental “scan” of your body and release any muscle tension. To minimize stress in general, keep your home and work spaces organized and prioritize your activities to avoid rushing and feeling overwhelmed. Make time for plenty of breaks and share your feelings with a supportive friend or family member. Reducing stress and anxiety will help your brain learn and recall information better.

Summary

1. Use simple aids.
2. Pay better attention.
3. Stay calm and take time to recall things carefully.
What does epilepsy mean for my usual activities?

This depends on the seizure type and frequency. Every person is different. Talk with your doctor to find out what applies to you. It is your responsibility to be straightforward and honest, and use common sense in any discussion around limits on activities such as driving, employment (e.g., working at heights) or recreational activities (e.g., swimming).

What is epilepsy surgery?

Surgery to cure or treat epilepsy has been used for more than 100 years, but the past 50 years have seen even more surgeries, as scientists have developed and improved technologies.

Patients with focal (or partial) epilepsy who have had little success with drug treatment for controlling seizures may be candidates for epilepsy surgery. The goal of the surgery is to remove the part of the brain that triggers the seizures without affecting important functions, such as language, memory, movement and sensation. Other types of surgery can be helpful to stop seizures from spreading and causing loss of control or falls.

Surgery for epilepsy is usually done at very specialized centres. A great deal of cooperation from the patient is needed for the pre-operative testing used to find out whether surgery would be helpful and not harmful. As with other surgical procedures, the benefits must always be carefully weighed against the risks.
What is Vagal Nerve Stimulation therapy?

Vagal Nerve Stimulation (VNS) is an alternative therapy for some patients when other treatments haven’t worked or when traditional epilepsy surgery is not an option. The goal of VNS is not to make the patient seizure-free, but instead to try to reduce the number of seizures and to improve quality of life. A stimulator (often called “the battery”) is surgically placed under the skin below the collarbone. A wire is threaded under the skin, connecting the stimulator to the vagus nerve on the left side of the neck. The device is programmed to give a small electrical current to the nerve that then goes to the brain. The goal is to stop seizures from spreading once they start or to stop them from starting at all.

What are your questions?
Please ask. We are here to help you.
First aid for seizures

STAY CALM

Bilateral or generalized tonic-clonic (convulsive) seizures

In a convulsive (generalized tonic-clonic or “grand mal”) seizure, the person loses consciousness and falls. The body is stiff at first (tonic phase). In the clonic phase, the arms and legs jerk or twitch rhythmically. Consciousness comes back slowly. The person may bite their tongue or lose control of their bladder. Other injuries may happen, such as shoulder dislocation or injuries from falling.

• Take away objects that may cause harm. Clear the area of sharp objects.
• Don’t hold the person to keep them from moving.
• Do not put anything in the person’s mouth. It is not possible for someone to swallow their tongue.
• Turn the person on his or her side.
• Do not offer food or drink until the person is fully alert.
• Reassure the person when they are back to normal consciousness; tell them they are OK.
• Stay with the person until they are fully alert and thinking clearly.
• Usually a trip to the hospital is not needed. However, you should go to the hospital if:
 › the seizure lasts 5 minutes or longer (not including the recovery phase)
 › you have one seizure after another
 › you are pregnant
 › it is your first-ever seizure
 › you are injured and need medical attention.

Focal seizure with impairment of consciousness or awareness (formerly called Complex Partial Seizure)

For someone who is mumbling or making random movements, including head turning or pulling at clothes, and who appears to be out of contact or unaware of their surroundings:

• Speak calmly to the person.
• Do not restrain, but gently guide the person away from danger.
• Stay with the person until he or she is fully alert.

The seizure and post-seizure confusion may last as long as 20-30 minutes.
Absence seizure

For momentary lapses of attention (absence or “petit mal” seizures), no first aid is needed; these seizures only last a few seconds. The person may look like they are daydreaming. Since these seizures are so mild-looking, they may go undiagnosed. If you suspect someone is having absence seizures, bring this to the attention of an appropriate person, such as your health care provider.

For more information, contact:
Dr. R. Mark Sadler or
Susan Rahey (Program Coordinator)
c/o Division of Neurology
3rd Floor, Halifax Infirmary
QEII Health Sciences Centre
1796 Summer Street
Halifax, NS B3H 3A7

Phone: 902-473-2136
Fax: 902-473-4438
Resources
The Epilepsy Association of Nova Scotia
Suite 306, 5880 Spring Garden Road
Halifax, NS B3H 1Y1
Phone: 902-429-2633
Toll-free: 1-866-Epilepsy (1-866-374-5377)

www.epilepsyns.org
www.seizuretracker.com
www.epilepsy.com
www.epilepsymatters.com
www.clae.org
www.ilae.org
www.ibe-epilepsy.org
http://braininjury.ns.com
www.purpleday.org
www.qe2foundation.com
Purple Day for epilepsy – get involved!

In 2008, a young girl from Nova Scotia, Cassidy Megan, had the idea of Purple Day. This idea came from by her own struggles with epilepsy. Cassidy’s goal is to get people talking about epilepsy in order to dispel myths and inform those with seizures that they are not alone. This grassroots initiative is now celebrated on all continents including Antarctica.

In June 2012 the Government of Canada passed a law identifying March 26th as a day for epilepsy awareness. The Purple Day Act is the only law in Canada designating a special day for epilepsy awareness.

The QEII Epilepsy Program celebrates Purple Day every year on or near March 26th. We encourage you to get involved to promote Purple Day and epilepsy awareness in your community.
Purple Day Act

S.C. 2012, c. 13
Assented to 2012-06-28
An Act respecting a day to increase public awareness about epilepsy

SUMMARY
This enactment designates the 26th day of March in each and every year as “Purple Day”.

Preamble
Whereas the Parliament of Canada wishes to assist in efforts to educate and increase awareness, among members of the public, about people living with epilepsy;
Now, therefore, Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada, enacts as follows:

SHORT TITLE
Marginal note: Short title

1. This Act may be cited as the Purple Day Act.

PURPLE DAY
Marginal note: Purple Day

2. Throughout Canada, in each and every year, the 26th day of March is to be known as “Purple Day”.

Marginal note: Wearing purple

3. On the 26th day of March, people are encouraged to wear the colour purple to indicate their support for people with epilepsy and to increase public awareness of this disorder.

Marginal note: Not a legal holiday

4. For greater certainty, Purple Day is not a legal holiday or a non-juridical day.

Justice of Laws website – Government of Canada
http://laws-lois.justice.gc.ca/eng/annualstatutes/2012_13/page-1.html

Wear Purple on March 26th to show you care!
Looking for more health information? Find this pamphlet and all our patient resources here: http://library.nshealth.ca/PatientGuides
Contact your local public library for books, videos, magazines, and other resources.
For more information go to http://library.novascotia.ca

Nova Scotia Health Authority promotes a smoke-free, vape-free, and scent-free environment.
Please do not use perfumed products. Thank you!

Nova Scotia Health Authority
www.nshealth.ca

Prepared by: Staff of the Epilepsy Program, QEII Health Sciences Centre ©
Designed by: NSHA Library Services

The information in this brochure is for informational and educational purposes only. The information is not intended to be and does not constitute health care or medical advice. If you have any questions, please ask your health care provider.

WX85-1169 Updated July 2017
The information in this pamphlet is to be updated every 3 years or as needed.